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Patterns of gene expression are primarily determined by proteins
that locally enhance or repress transcription. While many transcrip-
tion factors target a restricted number of genes, others appear to
modulate transcription levels globally. An example is MeCP2, an
abundant methylated-DNA binding protein that is mutated in the
neurological disorder Rett syndrome. Despite much research, the
molecular mechanism by which MeCP2 regulates gene expression is
not fully resolved. Here, we integrate quantitative, multidimensional
experimental analysis and mathematical modeling to indicate that
MeCP2 is a global transcriptional regulator whose binding to DNA
creates “slow sites” in gene bodies. We hypothesize that waves of
slowed-down RNA polymerase II formed behind these sites travel
backward and indirectly affect initiation, reminiscent of defect-
induced shockwaves in nonequilibrium physics transport models.
This mechanism differs from conventional gene-regulation mech-
anisms, which often involve direct modulation of transcription ini-
tiation. Our findings point to a genome-wide function of DNA
methylation that may account for the reversibility of Rett syn-
drome in mice. Moreover, our combined theoretical and experi-
mental approach provides a general method for understanding
how global gene-expression patterns are choreographed.
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Many eukaryotic chromatin-associated factors modulate
transcription by binding to specific sites in gene promoters

or enhancers (1, 2). Most transcription factors are thought to
modulate the initiation rate of transcription by altering histone–
DNA interactions (2, 3) or imposing promoter-proximal obstacles
(4). However, transcription can also be affected by processes that
occur in the bodies of genes. In particular, DNAmethylation, which
is widespread in gene bodies, appears to affect progression of RNA
polymerase II (RNA Pol II) through densely methylated exons (5).
The mechanism is unclear, but methyl-CpG binding proteins (6)
may be involved. Since most gene bodies contain methylated CpGs,
such proteins may have a global effect on transcription.
One putative global modulator is methyl-CpG binding protein 2

(MeCP2) (7, 8), which is highly expressed in neurons. MECP2 mu-
tations, including loss-of-function or gene duplication, lead to severe
neurological disorders (9, 10). MeCP2 does not behave as a con-
ventional transcription factor with discrete targets, as its binding site
occurs on average every ∼100 base pairs (bp). Evidence from in vitro
systems (11, 12) andmouse models (13, 14) suggests that MeCP2 can
mediate DNA-methylation-dependent transcriptional inhibition.
Transcriptional changes in mouse brain when MeCP2 is absent or
overexpressed are relatively subtle but widespread (15–17), and the
molecular mechanisms underlying these changes are unknown.
Here, we set out to resolve the mechanism of MeCP2-dependent

transcriptional regulation. Because MeCP2 binding sites occur in
the vast majority of genes, we reasoned that most are likely to be
influenced to some extent by its presence. To confront the technical
and analytical challenges posed by modest changes in the expres-
sion of large numbers of genes, we adopted a quantitative approach

that combined deep, high-quality datasets obtained from a uniform
population of Lund Human Mesencephalic (LUHMES)-derived
human dopaminergic neurons (18) with computational modeling.
We created a spectrum of LUHMES cell lines expressing distinct
levels of MeCP2. Using an assay for transposase-accessible chro-
matin sequencing (ATAC-seq) and chromatin immunoprecipita-
tion sequencing (ChIP-seq) together with mathematical modeling,
we detected a robust footprint of MeCP2 binding to mCG in vivo
and determined the amount of MeCP2 bound to DNA. Quantifi-
cation of mRNA abundance by RNA-sequencing (RNA-seq)
revealed a relationship between changes in transcription and the
density of mCG on gene bodies. To explain this observation, we
proposed and tested several distinct mechanistic models. The only
model consistent with our experimental results was one in which
MeCP2 leads to slowing down of RNA Pol II progression
through a transcription unit. Importantly, mutant MeCP2 that
is unable to bind the TBL1/TBLR1 subunits of the NCoR
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“roadblocks” in gene bodies that slow down elongating RNA
polymerase II, leading to polymerase queueing.
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corepressor complex fails to repress efficiently, suggesting that
repression depends upon this interaction.

Results
Global Changes in Transcription Correlate with MeCP2 Expression
Level. We created progenitor cell lines capable of differentiation
to a uniform population of human neurons (SI Appendix, Fig. S1A–C)
that expressed seven widely different levels of MeCP2, including
knockout (KO), wild-type (WT), and 11-fold overexpression (OE
11x) (Fig. 1 A and B and SI Appendix, Fig. S1D and Table S1). All
lines differentiated into neurons with similar kinetics, expressed
neuronal markers (SI Appendix, Fig. S1E), and had identical global
levels of DNA methylation (∼3.7% of all cytosines were methyl-
ated) (SI Appendix, Fig. S2A). Based on the known affinity of
MeCP2 for methylated CG (mCG), we expected that the effect of
MeCP2 on gene expression would depend on their mCG content.

DNA methylation was therefore quantified for all genes in WT
neurons by using whole-genome bisulfite sequencing [Tet-assisted
bisulfite sequencing (TAB-seq)] (SI Appendix, Fig. S2 B and C). We
calculated total methylation (total mCG, NmCG) as the number of
mCG dinucleotides, mCG density (ρmCG) as the number of mCGs
per 100 bp, and mCG mean as the percentage of mCG in all CG
dinucleotides. To determine the effects of MeCP2 on transcription,
we performed RNA-seq on all seven cell lines. We included all
expressed protein-coding genes (∼17,000 genes) in our analysis.
Most genes responded to MeCP2, but changes were small, pre-
cluding definition of a subset of affected genes (SI Appendix, Fig.
S3A). To enhance a possible relationship between expression
changes and DNA methylation that otherwise might be obscured by
other regulatory mechanisms and statistical noise, genes were
binned according to methylation density, considering gene bodies
and promoters separately.
The average change in expression vs. appropriate controls

[log2 fold change of gene expression (Log2FC)] showed a strong
relationship to mCG density (ρmCG) in gene bodies (Fig. 1C).
The effect was the strongest for ρmCG = 0.8–4.0 mCG per 100 bp,
which includes the vast majority of genes (SI Appendix, Fig. S3B).
The apparent stimulation of expression at very low mCG den-
sities in OE neurons is discussed in SI Appendix. Moreover, the
maximum slope of the Log2FC vs. ρmCG in gene bodies (Fig. 1 C,
black lines) was strikingly proportional to MeCP2 levels (Fig.
1D). In contrast, plots of Log2FC vs. ρmCG in promoter regions
showed a slope close to zero, indicating minimal dependence on
promoter methylation (SI Appendix, Fig. S3C). No clear de-
pendence on MeCP2 level was observed for Log2FC vs. total
gene body mCG or mCG mean (SI Appendix, Fig. S3 D and E).
These results indicated that the gene-body mCG density is the
strongest predictor of MeCP2-dependent transcriptional changes.
This relationship was not affected when data were filtered by sig-
nificance, gene length, or promoter methylation (SI Appendix, Fig.
S4 A–D). Moreover, the relationship was maintained even when
intronic reads were analyzed, suggesting that pre-mRNA is affected
in the same way as processed RNA (SI Appendix, Fig. S4E). To test
for a causal relationship, we transfected cells with two versions
(methylated or unmethylated gene body) of a luciferase reporter
gene with a methylation-free promoter in the presence of WT or
the DNA binding mutant MeCP2 [R111G] (SI Appendix, Fig. S5 A
and B). We observed a twofold repression of methylated vs.
unmethylated luciferase gene body in the presence of WT MeCP2,
compared with either no MeCP2 or mutant MeCP2 (Fig. 1E).

MeCP2 Binds Predominantly mCG Genome-Wide. To map the binding
of MeCP2 in human neurons, we performed MeCP2 ChIP-seq
for KO, WT, OE 4x, and OE 11x and developed a computer
model that simulated the ChIP-seq procedure and MeCP2
binding in vivo (Fig. 2A). As expected, ChIP enrichment was
proportional to the level of MeCP2 in each cell line (SI Appen-
dix, Fig. S6 A–C) and showed a strong peak centered at
the mCGs in MeCP2-positive lines (Fig. 2B), as well as a cor-
relation between MeCP2 enrichment and mCG density (Fig.
2C). Conversely, enrichment was absent at nonmethylated CGs
(SI Appendix, Fig. S6E).
To derive an independent measure of absolute MeCP2 density

on the DNA and to detect its molecular footprint with high reso-
lution, we performed ATAC-seq (19), in which transposase Tn5
cuts exposed DNA to reveal DNA accessibility within chromatin
(Fig. 2A). In agreement with the ChIP-seq data, ATAC-seq Tn5
insertion profiles (Fig. 2D) showed a graded depletion of insertion
sites centered around mCG in WT, OE 4x, and OE 11x neurons,
whose amplitude was proportional to MeCP2 concentration (Fig.
2E) and therefore represented a “molecular footprint” of MeCP2
binding in vivo. The size and amplitude of the footprint agreed well
with a computer model of ATAC-seq andMeCP2 binding (Fig. 2D,
black lines) and previous in vitro data (20, 21), confirming that
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Fig. 1. Gene expression strongly correlates with gene body mCG density
and MeCP2 abundance. (A) Experimental design (Materials and Methods).
d0, day 0; d9, day 9. (B) Mean number of MeCP2 molecules per nucleus. (C)
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(E) Ratio between luciferase expressions from an unmethylated and gene-
body methylated constructs, for three cases: no MeCP2, WT MeCP2, and a
methyl-CpG binding domain mutant R111G that is unable to bind mCG.
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MeCP2 occupies 11 bp of DNA in living cells. No depletion of
insertion sites was observed over unmethylated CG (SI Appendix,
Fig. S6F). The model revealed that only 6.3% of mCG sites are
actually occupied by MeCP2 in OE 11x neurons, falling to <1%
occupancy in WT (Fig. 2E), perhaps due in part to occlusion by
nucleosomes. Excellent agreement between the models and
ATAC-seq and ChIP-seq data allowed us to predict MeCP2
occupancy from mCG density and MeCP2 level in each cell line
(Fig. 2E and SI Appendix, Fig. S6D).

MeCP2 Does Not Regulate Transcription via Condensation of
Chromatin or Premature Termination. To interpret these results
mechanistically, we considered mathematical models based on a
commonly accepted paradigm for gene expression (SI Appendix,

Fig. S7A) (22). In the first class of models, named condensation
models (Fig. 3A), MeCP2 affects the rate of transcription initi-
ation via changes in chromatin structure. The possibility that
MeCP2 affects the initiation rate α by binding to promoters was
rejected because it would imply a stronger correlation between gene
expression and ρmCG in promoters than in gene bodies, contrary to
our observations (SI Appendix, Fig. S3C). MeCP2 could hypothet-
ically affect the fraction f of cells with specific genes in the ON state
via some long-distance mechanism involving binding to gene bodies
and leading to changes in the degree of chromatin openness near
promoters. However, mapping chromatin accessibility by using
ATAC-seq showed that, while there is a weak correlation between
MeCP2 and accessibility (Fig. 3B), it cannot account for the ob-
served Log2FC in gene expression (Fig. 3C).
We next considered potential effects of MeCP2 on the elongation

phase of transcription. The detachment model posits that MeCP2
causes transcription to prematurely abort (Fig. 3D). Since the
probability of termination increases with each blocking site, under
this model, the Log2FC is a function of the total number of mCGs
(NmCG) in the gene: Log2FC = −γ (M − 1)NmCG, where M is
MeCP2 concentration relative to WT, and the parameter γ is pro-
portional to the probability that Pol II aborts transcription when it
encounters MeCP2 or an MeCP2-induced chromatin modification.
The unknown parameter γ can be obtained by fitting the model to
the Log2FC (KO/WT) data (Fig. 3E). We found that the model
failed to reproduce the Log2FC vs. NmCG relationship for the OE
11x cell line (Fig. 3F). The model also failed to correctly predict the
observed relationship between Log2FC and mCG density in gene
bodies (SI Appendix, Fig. S7 B and C). Therefore, it is unlikely that
MeCP2 affects transcription via premature termination.

MeCP2 Creates “Dynamical Obstacles” That Impede Transcriptional
Elongation. Finally, we considered a “congestion model,” whereby
Pol II pauses when it encounters MeCP2 itself or an induced,
transient structural modification of chromatin (Fig. 4A). The pa-
rameters were: the fraction p of mCGs bound by MeCP2, MeCP2
turnover (unbinding) rate ku, and (specific to each gene) the length
L of the gene, the density ρmCG of mCGs, and the initiation rate α.
Fig. 4B shows the transcription rate for OE 11x predicted by the
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model as a function of α, for different mean MeCP2 densities
(pρmCG). The assumed value of ku = 0.04 s−1 is compatible with
the reported in vivo residence time of MeCP2 on chromatin
[25–40 s (23)]. Inspired by nonequilibrium statistical mechanics
approaches that have been utilized to model one-dimensional
transport (24, 25), we expected a nonequilibrium phase transition
from a low-density to a maximal-current (congested) phase as the
initiation rate or the density of obstacles increase beyond a critical
point. Indeed, all curves in Fig. 4B have a characteristic shape: a
linear relationship J ∼ α for small α, followed by saturation at high
initiation rates. Saturation occurs due to congestion as polymerases
queue upstream of obstacles (Movies S1 and S2). However, even in
the nonsaturated regime of intermediate α, excluded-volume in-
teractions between polymerases that have been slowed down by an
obstacle cause a density shockwave that propagates backward (Fig.
4C). A small increase in the density of polymerases near the pro-
moter decreased the rate of Pol II binding to the transcription start
site (TSS). Thus, even though MeCP2 does not directly affect Pol II
initiation, it does so indirectly by shockwaves that form behind
MeCP2-induced obstacles in gene bodies (Fig. 4D). To test the
model against RNA-seq data, we estimated average initiation rates
for genes with similar mCG densities by fitting the model to
Log2FC data from one of the cell lines [OE 11x/OE control (ctr);
Fig. 4 E, Left and SI Appendix, Fig. S8F]. We then used the model
to predict Log2FC for the remaining six cell lines. The model
strikingly reproduced the data (Fig. 4E for OE 4x and KO) as well

as the slopes of the Log2FC plots for all seven cell lines (Fig. 4F). A
similar behavior occurred in a modified model in which Pol II
slowed down (rather than completely stopped) on permanent or
long-lasting structural modifications of chromatin (SI Appendix, Fig.
S8 A–E and Movie S3). We conclude that both congestion models
are compatible with the experimental data presented in Fig. 1 C
and D. The models also predict that Log2FC should decrease with
increasing expression (measured as transcripts per million reads), in
agreement with the data (SI Appendix, Fig. S8G).

MeCP2 Binding to Both DNA and NCoR Are Essential to Slow Down
RNA Pol II. To address the question of whether MeCP2 impedes
Pol II progression directly by steric interference or indirectly by
altering chromatin structure [e.g., by histone deacetylation (26)],
we overexpressed mutated forms of MeCP2 in the presence of
WT MeCP2. The mutants were either unable to bind methylated
DNA (R111G) (27) or unable to recruit the histone deacetylase
complex NCoR (R306C) (14, 28) (Fig. 5A and SI Appendix, Fig.
S9A). As expected, sevenfold overexpression of MeCP2–R111G
caused no mCG-density-dependent transcriptional changes (Fig. 5
B and C and SI Appendix, Fig. S9 B and C). The R306C mutant,
on the other hand, was predicted to repress transcription if in-
hibition is directly due to MeCP2 binding to DNA, but not if
inhibition is mediated via the corepressor. In fact, 11-fold over-
expression of MeCP2–R306C relative to WT MeCP2 caused only
a small perturbation of gene expression, indicating a significant
loss of DNA methylation-dependent repression (Fig. 5 B and D
and SI Appendix, Fig. S9 B and C). The weak slope may represent
minor direct interference of DNA-bound MeCP2–R306C with
transcription. As neither mutant falls on the line defining the
linear relationship between gene repression and MeCP2 con-
centration (Fig. 5E), our findings favor a predominantly indirect
mechanism of repression, whereby corepressor recruitment alters
the chromatin state to impede transcription.

Concluding Remarks
In summary, a close alliance between mathematical modeling
and molecular biology has allowed us to discriminate molecular
mechanisms underlying the relatively subtle global effects of
MeCP2 on global gene expression. The proposed mechanism
relies on MeCP2–NCoR interaction that slows down the pro-
gression of Pol II during transcription elongation. A candidate
mediator of this effect is histone modification, in particular
histone deacetylation, as cell-transfection assays using methyl-
ated reporters demonstrate that repression depends upon his-
tone deacetylase activity (11, 12). According to this scenario,
MeCP2 recruitment of the histone deacetylase corepressor
NCoR would restrain transcription, perhaps by causing tighter
binding of nucleosomes to DNA (26). To explain the dramatic
reversibility of Rett syndrome in animal models (29), we propose
that, in the absence of MeCP2, DNA methylation patterns are
unaffected, allowing the reexpressed WT protein to bind within
gene bodies and commence normal modulation of transcrip-
tional elongation. We suggest that the congestion model may
apply to proteins other than MeCP2. For example, other
chromatin-binding factors that bind short (and thus abundant)
motifs, including other methyl-binding proteins, may modulate
gene expression by a similar mechanism.

Materials and Methods
Cell Lines. The procedure for culture and differentiation of the LUHMES cell
line was described (18). To create two independentMECP2 KO lines, we used
CRISPR-mediated gene disruption (30). To generate MeCP2 knockdowns,
several shRNAs against MeCP2 were designed by using Sigma-Aldrich Mis-
sion shRNA online software. Two shRNAs were chosen and cloned into a
pLKO.1 vector including scrambled shRNA as a control, and lentiviruses were
created (SI Appendix, Table S2). To increase the level of MeCP2, we created
lentiviruses expressing MeCP2 from two alternative promoters in the pLKO.1
vector: synapsin and cytomegalovirus. Calculation of SD, SEM, and t tests for
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Fig. 4. Mathematical modeling indicates that MeCP2 slows down tran-
scriptional elongation. (A) Schematic representation of the dynamical ob-
stacles model. (B) Transcription rate J predicted by the model, plotted as a
function of the initiation rate α, for different mean MeCP2 densities in gene
bodies. (C) Space–time plots (kymographs) representing Pol II moving along
the gene. Queues of Pol II induced by MeCP2 can reach the TSS (red dot) and
block initiation if both the initiation rate (α) and the density of MeCP2 (ρ) are
sufficiently high (C, Left). (D) Schematic representation of Pol II (gray) density
shockwaves forming behind MeCP2 (blue). Black line is the local density of
Pol II. (E) Log2FC (gene expression) vs. mCG density in gene bodies obtained
in computer simulations of the dynamical obstacles model (black solid lines)
fitted to the OE 11x/OE ctr RNA-seq dataset (red) agrees well with experi-
mental data for OE 4x/OE ctr (orange) and KO/ctr (purple) datasets. Error
bars represent ±SEM. (F) The maximum slope of Log2FC (gene expression) vs.
mCG density in gene bodies, predicted by the dynamical obstacles model
(black line). Points are experimental slopes from Fig. 1C.
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qPCR, Western blots, methylation, and total RNA quantification using high-
performance liquid chromatography (HPLC) were performed by using
GraphPad Prism (version 7).

Repression Assay. CpG-free vector containing Firefly Luciferase with CpGs
was methylated by M.SssI methyltransferase in the presence or absence of
S-adenosyl-L-methionine. Mouse embryonic fibroblasts were transfected by using
Lipofectamine 2000 with three plasmids containing Firefly Luciferase, Renilla Lu-
ciferase, and MeCP2. Luciferase activity measurements were performed by using
the Dual Luciferase assay kit (Promega), according to manufacturer’s protocol.

Library Preparation for Illumina Sequencing. All libraries were sequenced as
75- or 100-nucleotide-long paired-end reads on HiSeq 2000 and HiSeq 2500
Illumina platforms. Methylome of WT LUHMES-derived neurons at day 9 was
obtained by TAB-seq according to the published protocol (31). The RNA-seq
library was prepared according to manufacturer’s protocol for the ScriptSeq
Complete Gold kit (human/mouse/rat). Total RNA was isolated from all
generated cell lines (SI Appendix, Table S1) at day 9 of differentiation by
using either the RNeasy Mini kit or the AllPrep DNA/RNA Mini kit (Qiagen).
ATAC-seq in four cell lines (KO, WT, OE 4x, and OE 11x; SI Appendix, Table
S1) was performed as in ref. 32.

MeCP2 ChIP-seq was performed by using LUHMES-derived neurons at
day 9 of differentiation with four levels of MeCP2: KO, WT, OE 4x, and OE
11x (SI Appendix, Table S1). Libraries were prepared by using the NEBNext
Ultra II DNA library Prep kit (NEB) for both immunoprecipitations and
corresponding inputs.

Data Processing of Raw Reads from Illumina Sequencing. All reads were quality-
controlled, trimmed to remove adapters (Trimmomatic) (33) and duplicated
reads, and mapped to the human hg19 reference genome. Bismark (34) was
used to extract cytosine methylation from TAB-seq. All raw data were deposited
in the Gene Expression Omnibus database (accession no. GSE125660) (35).

RNA-Seq Data Analysis. We used a subset of protein-coding genes with suf-
ficient methylation coverage (bisulfite sequencing; ≥80% C with coverage ≥20),

and gene bodies 1 kb or longer. This resulted in 15,382 genes of the ini-
tial 17,764 protein-coding genes (86%). In all plots of Log2FC of differ-
ential gene expression, we shifted the Log2FC values so that the average
Log2FC in the range of mCG density ρmCG ∈ [1,6]/100 bp was zero for all
samples. This was motivated by the difficulty in determining the absolute
levels of expression, since we did not quantify total mRNA.

ChIP-Seq Enrichment Profiles. We first obtained accumulated counts (the
number of reads) cxi that overlapped with i-th base pair to the right (i > 0) or
left (i < 0) from feature x(x = mCG, non-mCG,...). We then calculated
enrichment profiles as

fi =
Norm1

�
cChIP,x

�½i�
Norm1ðcinput,xÞ½i�− 1,

where cChIP,xi and cinput,xi are accumulated counts from ChIP and input (ge-
nomic) DNA sequencing, respectively, and Norm1(c)[i] normalizes the counts
profiles such that their flanks have values close to one:

Norm1ðcÞ½i�= ci�P−301
j=−500cj +

P500
j=301cj

�.
400

.

We considered a particular C to bemethylated if it wasmethylated in 100%of
the reads, and the coverage was at least 5. We considered a C to be
unmethylated if it did not show up in any of the ChIP-seq reads asmethylated.

Computer Model of ChIP-Seq. We assumed that MeCP2 occupies methylated
cytosines with probability p times the probability of binding to a particular
motif. Binding probabilities for different motifs are based on known binding
affinities (36) and relative binding strengths (15). To create simulated ChIP
fragments, we assumed that if a DNA fragment contained at least one
MeCP2 bound to it, it would be present in the simulated ChIP-seq. Fragments
that do not contain any MeCP2 may still be present in the ChIP-seq data with
probability pbg, which accounts for “background” reads in ChIP-seq, even in
the absence of MeCP2. This is similar to previous models of ChIP-seq (37);
even the best ChIP-seq libraries can have a significant level of background
reads (pbg close to 1) (38). We also added CG and length bias and processed
simulated reads in the same way as the experimental ChIP data.

For each ChIP-seq dataset, we fitted the simulated profile (parametrized by
p, pbg) to the experimental profile. Any p ≤ 0.1 gives a good fit (SI Appendix,
Fig. S6D), indicating that p ∼ 0.1 is the upper bound on mCG occupancy in
11x OE. We used best-fit parameters to predict profiles on features other
than mCG (SI Appendix, Fig. S6E).

ATAC-Seq Footprints. ATAC-seq was analyzed in a similar way to ChIP-seq,
except that we used fragments’ endpoints (Tn5 insertion sites) to generate
accumulated counts ni. We calculated the insertion profiles as

fi = ln

"
Norm2

�
ncell line
i

�
Norm2

�
nKO
i

�
#
,

where ncell line
i and nKO

i are the insertion counts profiles for a given cell line
and KO1, respectively, and Norm2 normalizes the counts profiles such that
their flanks have values close to one:

Norm2ðniÞ= ni�P−41
j=−50nj +

P50
j=41nj

�.
20

.

Computer Model of ATAC-Seq.Weused the same bindingmodel as in the ChIP-
seq simulations. We assumed that MeCP2 occupies 11 bp (20) and that
the protein is centered on an mC. We simulated the action of the Tn5
transposase by splitting the sequence into fragments in areas free of MeCP2,
and we included Tn5 sequence bias and CG and length bias. The model has
three parameters: the density p of MeCP2 on mCxx, the average density of
insertion (cut) sites t, and the GC bias b. We processed simulated DNA frag-
ments in the same way as described above for the experimental data. We
examined the role of the parameters on the shape and depth of the simu-
lated footprint of MeCP2 and concluded that the footprint is not affected as
long as the test and control samples have been processed in a similar way. To
extract MeCP2 occupancy p from ATAC-seq data, we fitted the model (free
parameters p, t, and a fixed b = 6.0) to experimental footprints for all four
cell lines. The relationship is linear (Fig. 2E), with the best-fit p = 0.0058 ×
Mcell line/MWT.
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Fig. 5. MeCP2 slows down transcription via a mechanism involving NCoR.
(A) Location of two binding domains in MeCP2 that are relevant for the
proposed mechanism: methyl-CpG binding domain (MBD) and NCoR-
interaction domain (NID). The mutation R111G causes MeCP2 to lose the
ability to bind specifically to mCG. The mutation R306C prevents MeCP2
from binding the NCoR complex. (B) Level of MeCP2 (Western blot) in two
overexpressed mutant cell lines (R111G and R306C) and the overexpression
control cell line (OE ctr). OE 11x is shown for comparison. Values are aver-
aged over three biological replicates and normalized by the level of histone
H3. (C) Log2FC (expression) of OE R111G/OE ctr shows almost no de-
pendence on mCG density in gene bodies (black). The gray line shows the
maximum slope. (D) Log2FC (expression) of OE R306C/OE ctr shows a small
negative correlation with gene body mCG density (brown). The gray line
shows the maximum slope. (E) Maximum slopes for all cell lines including OE
R111G (black) and OE R306C (brown) from C and D vs. MeCP2 level (Western
blot). In all plots, error bars represent ±SEM.

Cholewa-Waclaw et al. PNAS | July 23, 2019 | vol. 116 | no. 30 | 14999

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
6,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1903549116/-/DCSupplemental


www.manaraa.com

Chromatin Accessibility from ATAC-Seq. For each gene, we calculated its mean
insertion count �n and selected regions (“insertion peaks”) in which ni > 4�n.
Accessibility was defined as the sum of all insertions in the peaks divided by
the “background” �n:

a=
P

ini

�n
.

Mathematical Models of Gene Expression. The condensation model assumes
that the fraction fi of cells in which gene i is actively transcribed depends on
promoter openness ai (measured by ATAC-seq), which in turn depends on the
level M of MeCP2 and gene methylation ρi: fi = fi(M, ρi) ∝ ai = ai(M, ρi). The
model predicts that Log2FCX/Y of the ratio of gene expression of cell line X vs.
cell line Y should yield the same curve (plus a constant) as the logarithm of the
ratio of accessibilities of X vs. Y when plotted as a function of ρmCG. Data did
not support this model (Fig. 3C). The detachment model poses that the
probability that RNA Pol II successfully terminates is P = ð1− λÞn ≅ e−λn, where n
is the number of “abort sites” on the gene, proportional to the number of
MeCP2 molecules on the gene, and λ is the abortion probability. We show that

Log2FCX=Y = const− γ

�
MX

MY
− 1

�
n,

where γ ∝ λ is an unknown parameter identical for all cell lines, and MX, MY

are MeCP2 levels in cell lines X and Y. The model was rejected (Fig. 3F).
We considered two mechanisms by which MeCP2 could affect elongation.

To implement the slow-sites model, we used the totally asymmetric simple
exclusion process (TASEP) with open boundaries (24). A gene is represented
as a chain of L sites. Each site (equivalent to 60 bp of the DNA) is either
occupied by a particle (RNA Pol II) or is empty. Particles enter the chain at site
i = 1 with rate α (transcription initiation rate), move along the chain, and exit
at site i = L with rate β = 1 s−1. Sites can be “fast” or “slow.” Slow sites
represent mCGs affected by the interaction with MeCP2, whereas fast sites
are all other sites (methylated or not). Particles jump with rate v = 1 s−1

(equivalent to Pol II speed ∼60 bp/s) on fast sites and vs = 0.05 s−1 on slow
sites. Slow sites are randomly and uniformly distributed with density ρs =

pρmCG, where p is the probability that an mCG is occupied by MeCP2. To
relate this model to the mRNA-seq differential expression data, we
calculated Log2FC as

Log2FCX=Y = log2
J
�
α, ρs,X

�
J
�
α, ρs,Y

�,
where ρs,X = ρmCGpX, ρs,Y = ρmCGpY, in which pX, pY are MeCP2 occupation
probabilities for cell lines X, Y. In the above expression, we know all quan-
tities except the initiation rate α, which we fit to the OE 11x data.

The dynamical obstacles model is very similar, with two exceptions: (i) Pol II
always moves with the same speed v (no slow sites) as long as it is not
blocked by other polymerases and obstacles; and (ii) obstacles bind and
unbind dynamically from the methylated sites. We assumed that unbinding
occurs with rate ku per obstacle, whereas binding occurs with rate kup per
unoccupied mCG. Obstacles do not bind if an mCG is already occupied by an
obstacle or a polymerase. We assumed that obstacles are not restricted to
accessible mCGs and that their density on actively transcribed genes may be
higher than p obtained from ATAC-seq, but still proportional to MeCP2
level. We found that p = M/MOE11x reproduces Log2FC data for all cell lines.
Computer programs, scripts, and data related to mathematical models have
been deposited at the Edinburgh Data Share database (39).

Additional details for materials and methods are provided in SI Appendix.
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